Etymology. Named after Denis O'Meara who, around 1980, drew my attention to this spectacular plant. Denis has undertaken a number of surveys to determine the geographic range of the new variety. He has successfully hrought it into cultivation in his extensive native plant arboretum at Marble Bar.

ACKNOWLEDGEMENTS

The people whose specimens are cited above are gratefully acknowledged for providing field information, photographs and specimens of this new variety. Margaret Pieroni is thanked for providing the illustration and Diana Corbyn for the Latin diagnosis.

REFERENCES

- BENTHAM, G. 1864. Flora Australiensis, vol. 2 (Lovell Reeve & Co.: London.)
- BRIGGS, J. & LEIGH, J.H. 1988. Rare or Threatened Australian Plants, 1988 Revised Edition. Australian National Parks & Wildlife Service Special Publication no. 14.
- BROOKER, M.I.H. & HOPPER, S.D. 1982. New subspecies in Eucalyptus caesia and in E. crucis (Myrtaceae) of Western Australia. Nuytsia 4(1): 113-128.
- FITZGERALD, W.V. 1904. Notes on some West Australian species of Acacia. J. W. Austral. Nat. Hist. Soc. 1: 44-52.
- PRITZEL, E. IN DIELS, L. & PRITZEL, E. 1904-1905. Fragmenta Phytographiae Australiae occidentalis. (Wilhelm Engelmann: Leipzig.)
- MAIDEN, J.H. 1917. Acacia cyperophylla, The Red Mulga. The Forest Flora of New South Wales 6: 272-277 (Govt. Printer: Sydney.)
- MASLIN, B.R. 1977. Studies in the genus Acacia (Mimosaceae) 6. Miscellany. Nuytsia 2(3): 145-161.
- MASLIN, B.R. 1980. Acacia (Leguminosae-Mimosoideae): a contribution to the flora of Central Australia. J. Adelaide Bot. Gard. 2(4): 301-321.
- MASLIN, B.R. & PEDLEY, L. 1982. The distribution of Acacia (Leguminosae: Mimosoideae) in Australia. Part 1. Species distribution maps. W. Austral. Herb. Res. Notes No. 6: 1-127.
- PEDLEY, L. 1978. A revision of Acacia Mill. in Queensland. Austrobaileya 1(2): 75-234.

SEEDLINGS OF AUSTRALIAN CASUARINAS I. GERMINATION

By YEE H. HWANG^A and JOHN G. CONRAN^B Department of Ecology and Environmental Biology, Monash University, Clayton, Vic. 3168.

- A Present address: Division of Research, Natural Science Museum, Taichung, Taiwan.
- B Present address: Department of Botany, The University of Adelaide, G.P.O. Box 498, Adelaide, S.A. 5001. *Correspondence author.

ABSTRACT

Germination in 37 *Casuarina* (including *Allocasuarina*) species was studied and the results compared with previous records. The nature of a mesocarpic water-absorbing structure at the casuarina samara is discussed and two simple methods for germination are proposed.

INTRODUCTION

The germination of casuarina seed (samaras) is considered to be relatively easy (Elliot & Jones 1982). Turnbull and Martensz (1982, 1983) recommended a three-month post-ripening period before sowing, with most species benefitting from daily exposure to light during germination. Kuo (1984) reported that a 24-hour soaking in running water improved the germination of two species. On the other hand, cold, moist stratification was found to confer no apparent advantage to the germination of *C. cunninghamiana* (Jakimova 1965).

Previous germination substrata range from filter paper (Clemens et al. 1983), plastic sponge strips overlain by filter paper (Turnbull & Martensz 1982), river sand (Chuk 1983), coarse sand (Reddell & Bowen 1985), a saw-dust/sand mixture (Kuo 1984), perlite (Torrey 1976), vermiculite (Shepherd & El-Lakany 1983) to an unspecified "open, well-drained" medium (Elliott & Jones 1982).

Once wet, the samaras of many species become sticky due to the presence of a water-absorbing structure, the exact nature of which has been variously reported. It was first recorded as a mucilaginous gel (Mott & Groves 1981) and later as an elaborate polysaccharide (Turnbull & Martensz 1982). In addition, the structure was located on the testa by several authors (Turnbull & Martensz 1982; Langkamp & Plaisted 1987).

The aims of this study were to explore simpler germination methods in the sense of reducing the cost of labour or equipment, and to compare the present results, particularly the time required for germination, with previous reports. The nature of the water-absorbing structures on the samara was also investigated.

Although Johnson (1980, 1982, 1988) and Wilson and Johnson (1989) have divided *Casuarina sens. lat.* into four genera: *Casuarina, Allocasuarina, Gymnostoma* and *Ceuthostoma,* studies by Dilcher *et. al.* (1990) and Hwang (1989) have failed to clearly distinguish *Allocasuarina* from *Casuarina* for a range of micromorphological and seedling characters. For this reason, those species referred by Johnson to Allocasuarina have been retained here as *Casuarina.*

MATERIALS AND METHODS

Seeds of 105 specimens were obtained from various sources (see Appendix). A gauze-covered beaker of seeds was placed overnight under running tap water, then the seeds were spread on a wet fibrous pad (Figure 1). They were placed in a glasshouse under natural lighting, and an evaporative air cooler was automatically activated when the temperature reached 30°. The number of days to first germination was recorded, where germination was defined as the emergence of the radicle (Turnbull & Martensz 1982).

Samara Appendages

Material of the water-absorbing structure was removed from the samaras of each species, moistened with distilled water, and mounted under a light transmission microscope.

RESULTS

Germination

The time to the first germination for each specimen is listed in the Appendix. In general, the time recorded by Kullmann (1981) was longer than other reports (Table 1) although the difference was only significant ($x^2p < 0.05$) for four of the species. The results from Turnbull and Martensz (1982) are similar to the present study for comparable species.

Three medium-relevant factors affect the germination of casuarinas: water, air and light. Sand or sandy media have only the advantage of air supply, whereas vermiculite and analogous materials have the advantage of both water and air. Filter paper has all the above advantages plus ease of observation, but if placed in a closed petri dish, the chance of fungal attack is enhanced. In contrast, if the petri dish is left open, then there will be problems with water supply.

In the present study we used the design shown in Figure 1 which incorporates every advantage. It is suggested that the wooden board (Figure 1; plastic can be used if there are no chemical exudates) covers as much of the water surface as possible to reduce evaporation (the size shown in Figure 1 is for convenience of illustration). The plastic tray should ideally be black to reduce algal growth in the water. The wick/pad can be made of

Table	1.	Days	to	the	first	germination	of	Australian	casuarinas
-------	----	------	----	-----	-------	-------------	----	------------	------------

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Species	This Study	Kullmann (1981)	Turnbull & Martensz (1982)	x ² _c	df	Р
acustria 18 18 14 14 0.72 2 n.s. acustruitus 14.3 16 - 0.03 1 n.s. corniculata 14.3 16 - 0.16 1 n.s. corniculata 9.7 7 7 0.90 2 n.s. cunninghamiana 5 - 5 0.03 1 n.s. cunninghamiana 5 - 5 0.03 1 n.s. cunninghamiana - - - - - - - ssp. noidon 6 - <td< td=""><td>Casuarina</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Casuarina						
acathevalus 10.3 14 14 0.72 2 n.s. campestris 6.5 14 8 3.31 2 n.s. comiculati 14.3 16 - 0.16 1 n.s. cruninghamiana 5 - 5 0.03 1 n.s. sp. cninighamiana 5 - 5 0.03 1 n.s. sp. minghamiana 6 - - - - - sp. miodon 6 - - - - - - decussata 14 20 14 1.50 2 n.s. distyla 6.7 - - - - - decussata 14 20 14 1.50 2 n.s. distyla 6.7 - - - - - equisetifolia 15 - 5.5 3.52 1 n.s. fasenanta 18.5 20 10 3.60 2 n.s.	acuaria	18	18		0.03	1	n.s
$\begin{array}{cccc} campestras & 6.5 & 14 & 8 & 3.31 & 2 & n.s \\ corniculata & 14.3 & 16 & . & 0.16 & 1 & n.s \\ crustata & 9.7 & 7 & 7 & 0.90 & 2 & n.s \\ cunninghamiana & & & & & & & & \\ ssp. cunninghamiana & & & & & & & & & \\ ssp. cunninghamiana & & & & & & & & & & \\ cussed & 4 & 14 & 5 & 7.91 & 2 & 0.05 \\ decassed & 4 & 14 & 5 & 7.91 & 2 & 0.05 \\ decassed & 4 & 14 & 5 & 4.23 & 2 & n.s \\ distyla & 6.7 & . & & & & & & & \\ distyla & 6.7 & . & & & & & & & \\ styla & 6.7 & . & & & & & & & \\ cussed & 10.3 & . & 7 & 0.10 & 3.60 & 2 & n.s \\ equisctifolia & 15 & . & 5.5 & 3.52 & 1 & n.s \\ plased & 10.3 & . & 7 & 0.31 & 1 & n.s \\ plased & 10.3 & . & 7 & 0.31 & 1 & n.s \\ helmsil & 8 & 16 & . & 3.38 & 1 & n.s \\ helmsil & 8 & 16 & . & 3.38 & 1 & n.s \\ helmsil & 8 & 16 & . & 3.38 & 1 & n.s \\ hurnits & 7 & 14 & 7 & 4.66 & 2 & n.s \\ ittoralis & 5.9 & . & 5 & 0.00 & 1 & n.s \\ ittoralis & 5.9 & . & 5 & 0.00 & 1 & n.s \\ ittoralis & 5.9 & . & . & . & . & . & . \\ rand & 9 & . & . & . & . & . & . & . \\ nand & 9 & . & . & . & . & . & . & . & . \\ nand & 9 & . & . & . & . & . & . & . & . \\ nand & 9 & . & . & . & . & . & . & . & . \\ nand & 9 & . & . & . & . & . & . & . & . \\ nand & 9 & . & . & . & . & . & . & . & . \\ nand & 9 & . & . & . & . & . & . & . & . \\ nand & 9 & . & . & . & . & . & . & . & . & .$	acutwalvis	10.3	14	14	0.72	2	n.s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	campestras	6.5	14	8	3.31	2	n.s
cristata 9.7 7 7 0.90 2 n.s cumminghamiana 5 - 5 0.03 1 n.s sp. cumminghamiana 6 - - - - - sp. minghamiana 6 - - - - - - decussneama 4 14 20 14 1.50 2 n.s dicsianeama 4 11 5 4.23 2 n.s dicsiana 4 11 5 4.23 2 n.s distyla 6.7 - - - - - equisetifolia 15 - 5.5 3.52 1 n.s faserana 18.5 20 10 3.60 2 n.s glauca 10.3 - 7 0.31 1 n.s inophloia 6 - - - - - - - lebruanniana 11.7 18 7 4.98 2	corniculata	14.5	16	1	0.16	1	n.s
$\begin{array}{c} curning hamiana \\ ssp. curning hamiana \\ ssp. curning hamiana \\ curning hamiana \\ curning hamiana \\ curning hamiana \\ ssp. miodon \\ decisse and \\ displa $	cristata	9.7	7	7	0.90	2	n.s
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	cunninghamiana			_			
$\begin{array}{c} curming barniana \\ ssp. miodom & 6 & 7 & 7 & 7 & 7 \\ decaisseana & 4 & 14 & 5 & 7.91 & 2 & 0.05 \\ decaisseana & 14 & 20 & 14 & 1.50 & 2 & n.s \\ diesiana & 4 & 11 & 5 & 4.23 & 2 & n.s \\ distyla & 6.7 & 7 & 7 & 7 & 7 \\ equictifica & 15 & 7.5 & 3.52 & 1 & n.s \\ fraserana & 18.5 & 20 & 10 & 3.60 & 2 & n.s \\ glauca & 10.3 & 7 & 7 & 0.31 & 1 & n.s \\ huegeliana & 5.5 & 14 & 7 & 4.66 & 2 & n.s \\ huegeliana & 5.5 & 14 & 7 & 4.66 & 2 & n.s \\ huegeliana & 5.5 & 14 & 7 & 4.66 & 2 & n.s \\ huegeliana & 5.5 & 14 & 7 & 5.83 & 2 & n.s \\ huegeliana & 5.5 & 14 & 7 & 4.66 & 2 & n.s \\ huegeliana & 5.5 & 14 & 7 & 5.83 & 2 & n.s \\ huegeliana & 11.7 & 18 & 7 & 4.98 & 2 & n.s \\ into hlois & 6 & 7 & 7 & 0.00 & 1 & n.s \\ ittoralis & 5.9 & - & 5 & 0.00 & 1 & n.s \\ namula & 7 & -17 & 5 & 8.56 & 2 & 0.05 \\ namula & 7 & -17 & 5 & 8.56 & 2 & 0.05 \\ namula & 7 & -17 & 5 & 8.56 & 2 & 0.05 \\ namula & 7 & -17 & 5 & 8.56 & 2 & 0.05 \\ namula & 9 & 7 & - & - & - & - \\ namu & 9 & 7 & - & - & - & - & - \\ namu & 9 & 7 & - & - & - & - & - \\ namu & 9 & 7 & - & - & - & - & - \\ namu & 9 & 7 & - & - & - & - & - \\ namu & 9 & 7 & - & - & - & - & - \\ namu & 9 & 7 & - & - & - & - & - \\ namu & 9 & 7 & - & - & - & - & - \\ namu & 9 & 7 & - & - & - & - & - \\ namu & 9 & 7 & - & - & - & - & - \\ namu & 9 & 7 & - & - & - & - & - \\ namu & 9 & 7 & - & - & - & - & - \\ namu & 9 & 7 & - & - & - & - & - \\ namu & 9 & 7 & - & - & - & - & - \\ namulelleriana & 13.4 & - & - & - & - & - \\ nustler & 13.7 & - & - & - & - & - \\ nustler & 13.7 & - & - & - & - & - \\ nustler & 13.7 & - & - & - & - & - \\ nustler & 13.7 & - & - & - & - & - & - \\ nustler & 11 & 14 & - & 0.64 & 1 & n.s \\ nustler & 9.3 & 17 & 14 & 2.24 & 2 & n.s \\ theyoides & 11 & 14 & - & 0.64 & 1 & n.s \\ theyoides & 11 & 14 & - & 0.64 & 1 & n.s \\ theyoides & 11 & 14 & - & 0.64 & 1 & n.s \\ theyoides & 11 & 14 & - & 7 & 0.02 & 1 & n.s \\ theyoides & 11 & 14 & - & 7 & 0.02 & 1 & n.s \\ theyoides & 11 & 14 & - & 7 & 0.02 & 1 & n.s \\ theyoides & 11 & 14 & - & 7 & 0.02 & 1 & n.s \\ theyoides & 11 & 14 & - & 7 & 0.02 & 1 & n.$	ssp. cunninghamiana	5	-	5	0.03	1	n.s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	cunninghamiana	,					
decaissneara41457.9120.05decussata1420141.502n.sdielsiara41154.232n.sdistyla6.7equisetifolia15-5.53.521n.sfasenana18.520103.602n.sglauca10.3-70.311n.shelmsii816-3.381n.shumils71475.832n.sinophloia6lehranniana11.71874.982n.snederinana13.4numa9numa9numa9numa9numa9numa9numa9numa9numa9numa9nun	ssp. miodon	6		1		-	
decusata 14 20 14 1.50 2 n.s. dicisina 4 11 5 4.23 2 n.s. distyla 6.7 - - - - - equistyla 15 - 5.5 3.52 1 n.s. equistyla 15 - 5.5 3.52 1 n.s. glauca 10.3 - 7 0.31 1 n.s. glauca 10.3 - 7 0.31 1 n.s. hermili 8 16 - 3.38 1 n.s. hurgiliana 5.5 14 7 4.66 2 n.s. hurgiliana 6 - - - - - lebmanniana 11.7 18 7 4.98 2 n.s. leubrannia 5.9 - 5 0.00 1 n.s. incostachya 6 - - - - - nana 9	decaisneana	4	14	5	7.91	2	0.05
dielsima41154.232n.sdistyla6.7faserama18.520103.602n.sfaserama18.520103.602n.sfaserama10.3-70.311n.shelmsii816-3.381n.shelmsii71475.632n.sinophoia6lehmanniana11.71874.982n.slittoralis5.9-50.001n.sleubmannia8menilifera9manua9abesa7*1758.5620.05obesa7patadoxa10pinaster17200.431n.spusilla13.7scieroclada922-6.3210.05striata11.114-0.0431n.sthospieles1114-0.081n.stranadoxa7-1striata12.2-	decussata	14	20	14	1.50	2	n.s
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	dielsiana	4	11	5	4.23	2	n.s
equisitifolia 15 $-$ 5.5 3.52 1 n.s fraseruna 10.3 $-$ 7 0.31 1 n.s glauca 8 16 $-$ 3.38 1 n.s helmiti 8 16 $-$ 3.38 1 n.s hermitis 5.5 14 7 4.66 2 n.s humitis 7 14 7 4.66 2 n.s inophloia 6 $ -$ lethmanniana 11.7 18 7 4.98 2 n.s littoralis 5.9 $-$ 5 0.00 1 n.s inconstactopa 6 2 $-$ 9.48 1 0.01 monilifera 9 $ -$ nata 9 $ -$	distyla	0.7		1.		1	
fasemani (65.2) 20 (0) 3.60 2 $n.s$ glauca 10.3 -7 0.31 1 $n.s$ helmsii 8 16 - 3.38 1 $n.s$ huegliana 5.5 14 7 4.66 2 $n.s$ huegliana 7 14 7 5.83 2 $n.s$ inophloia 6 $1itoralis$ 5.9 - 5 0.00 1 $n.s$ inophloia 6 $1itoralis$ 5.9 - 5 0.00 1 $n.s$ incrostachya 6 2 - 9.48 1 0.01 monilifera 9 $matelleriatna13.40besu7^{*}1758.5620.05olgodon7patudoxa10pinaster17200.431n.spusilla3.7striata11.2trister17442.242n.strister17142.242n.strister17200.641n.strister1114$	equisetifolia	15		5.5	3.52	1	n.s
glauca 10.3 - 1 0.51 1 n.s helmsii 8 16 - 3.38 1 n.s huegeliana 5.5 14 7 4.66 2 n.s huenits 7 14 7 5.83 2 n.s huenits 7 14 7 5.83 2 n.s inophloia 6 - - - - - lehmanniana 11.7 18 7 4.98 2 n.s lehmanniana 11.7 18 7 0.00 1 n.s leubmannia 8 - 7 0.00 1 n.s icotstachya 6 2 - 9.48 1 0.01 monitifera 9 - - - - - - nana 9 - - - - - - - natificra 9 - - - - - - -	fraseriana	18.5	20	10	3.60	2	n.s
helmsii 0 10 2 3.58 1 n.s huegeliana 5.5 14 7 4.66 2 n.s humilis 7 14 7 5.83 2 n.s inaphloia 6 7 7 5.83 2 n.s inaphloia 6 7 7 5.83 2 n.s iedwaminiana 11.7 18 7 4.98 2 n.s littorulis 5.9 - 5 0.00 1 n.s nicrostachya 6 2 - 9.48 1 0.01 monilifera 9 - - - - - nama 9 - - - - - - obesa 7 17 5 8.56 2 0.05 oligodon - - - patadosa 9.7 - - - - - - - pasiladosa 9.7 - - -	glauca	10.5	i.	(0.31	1	n. s
huegeliana 5.3 14 7 4.66 2 n.s humils 7 14 7 5.83 2 n.s inophloia 6 7 4.98 2 n.s inophloia 11.7 18 7 4.98 2 n.s itophloia 5.9 5 0.00 1 n.s leubrummia 8 - 7 0.00 1 n.s leubrummi 8 - 7 0.00 1 n.s microstachya 6 2 - 9.48 1 0.01 monilifera 9 - - - - - nama 9 - - - - - - obesa 7 117 5 8.56 2 0.05 olgodon - - - paludosa 9.7 - - - - - - - - - - - - - - - -	helmsii	0	10	-	3.38	1	n.s
humits l <	huegeliana	2.2	14	4	4.66	2	n.s
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	humilis	1	14	(,)	5.83	2	n.s
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	inophloia	11.7	10	-	-	-	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lehmanniana	5.0	18	í.	4.98	2	n.s
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	littoralis	5.9	-	2	0.00	1	n.s
microstachya 0 2 - 9,45 1 0,01 monit/fera 9	leuhmannii	0	*5	(0.00	-	n.s
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	microstachya	0	2		9.48	1	0.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	monilifera	13.4	-	-	-	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	muelleriana	15.4		1	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	nana	7	*17	5	0 54		0.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	obesa		11	,	0.00	2	0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	oligodon	07			-	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	paludosa	10	-	1	-	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	paradoxa	17	20		0.43	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	pinaster	13.7	20	1	0.45	Ţ	n.s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	pusilla	13.1	+77	1	637	ĩ	0.05
strictit 11.2 14 2.24 2 n.s tessellatat 9.3 17 14 2.24 2 n.s thysolides 11 14 - 0.64 1 n.s torulosat 7 - 5 0.08 1 n.s tricholon 9 18 - 3.70 1 n.s	scleroclada	11.2	22		0.92	4	0.03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	striata	0.3	17	14	7 74	-	1
tradoutes 7 - 5 0.08 1 n.s trichodon 9 18 - 3.70 1 n.s	tessenana	11	14	17	0.64	1	11.5
tricholon 9 18 3.70 1 n.s	thuyoutes	7	17	5	0.08	1	11.5
$\frac{1}{1}$ $\frac{1}$	torniosa	6	18		3.70	i	11.5
	tricnodon	63	10	7	0.72	i	11.3

* significantly different

x², using Yate's correction (Zar 1984).

any fibrous material (such as cheese cloth), as long as its thickness ensures a good water supply on hot days. An extra advantage of this design is that the large amount of water acts as a temperature buffer by absorbing heat during the day and releasing it during the night when the temperature is lower. Although different species have different optimal germinating temperatures (Turnbull & Martensz 1982), in general most species will germinate without special treatment.

An interesting germination feature observed during this study involved germinating seeds under water. Many of the species tested were found to germinate successfully under water, and this method may prove to be one of the most efficient, although further study is needed. The main problem with this method is that the seedlings need to be removed from the water as soon as possible. How long they can stay in water after germination is still uncertain, although seedlings with a 10mm taproot were still alive.

DISCUSSION

Samara Appendages

The water-absorbing structure was found to occur mainly around the transition zone between the wing and nutlet, and microscope examination revealed numerous coiled fibres superficially resembling tubular worms (Figure 2). It is this hollow tube which holds the water. When torn, the

Figure 2. Coiled mesocarpic fibres of C. *decaisneana*. Scale bar -40 um. A: an intact fibre and several torn ones. B: a partly uncoiled fibre.

fibres uncoil at the torn ends. As *Casuarina* "seeds" are samaras, the "seed coat" and thus the fibres are of mesocarpic origin. Ladd (1989) in an independent study also reached this conclusion.

Mott & Groves (1981) postulated that the fibres help with seedling anchorage, and we suggest that they also help to detach the wing, which is not required during germination. The wing, in addition to its role in airborne dispersal agent, also acts as a flotation device if the seed lands on water. The amount of fibres, and the coil shape also appear to have some use as taxonomic characters. Species from arid regions appear to have more fibres. However, the taxonomic usefulness of the samara fibres requires further study.

ACKNOWLEDGEMENTS

The numerous institutes and individuals listed in the Appendix are thanked for the provision of seeds. The Monash Department of Ecology and Evolutionary Biology is thanked for the provision of facilities for the work, which was carried out by YH during the course of study for a Ph.D.

REFERENCES

- CHUCK, M. 1983. Casuarina decaisneana in the Northern Territory of Australia. In S.J. Midgley, J.W. Turnbull and R.D. Johnston (eds), Casuarina Ecology, Management and Utilization. CSIRO, Melbourne.
- CLEMENS, J., CAMPBELL, L.C. and NURISJAH, S. 1983. Germination, growth and mineral ion concentration of *Casuarina* species under saline condition. *Aust. J. Bot.* 31, 1-9.
- DILCHER, D.L., CHRISTOPHEL, D.C., BHAGWANDIN, H.D. Jr, and SCRIVEN, L.J. 1990. Evolution of the Casuarinaceae: Morphological comparisons of some extant species. Amer. J. Bot. 77, 338-355.
- ELLIOTT, W.R. and JONES, D.L. 1982. Encyclopaedia of Australian plants suitable for cultivation. Vol. 2. Lothian, Melbourne.
- HWANG, Y.H. 1989. Taxonomy of Casuarina on Seedling Morphology and Allozymes. Ph. D. Thesis, Monash University.
- JAKIMOVA, T.V. 1965. Effect of stratification on the germination of seeds of subtropical plants. Bull. Glavnogo Botanicheskogo Sada 57, 94-97.
- JOHNSON, L.A.S. 1980. Notes on Casuarinaceae. Telopea 2, 83-84.
- JOHNSON, L.A.S. 1982. Notes on Casuarinaceae II. J. Adelaide Bot. Gard. 6, 73-87.
- JOHNSON, L.A.S. 1988. Notes Casuarinaceae III: the new Genus Ceuthostoma. Telopea 3: 133-7.
- KULLMANN, W.H. 1981. Seed germination records of Western Australian plants. Kings Park Res. Notes 7.
- KUO, S.R. 1984. (Studies on the seed germination and seedling growth of *Casuarina*) (in Chinese). *Tech. Bull. Exper. For. Taiwan Univ.* 158, 1-12.)
- LADD, P.G. 1989. The status of the Casuarinaceae in Australian forests. In: K.J. Frawley and N.M Semple (eds) Australia's Ever Changing Forests. pp63-85. Dept. of Geography and Oceanography. Australian Defence Force Academy, Canberra.
- LANGKAMP,P. and PLAISTED, M. 1987. Perspectives on the use of native plant seed in the Australian mining industry. In P. Langkamp (ed.), Germination of Australian Native Plant Seed. Inkata, Melbourne.
- MOTT, J.J. and GROVES, R.H. 1981. Germination strategies. In J.S. Pate and J. McComb (eds), *The Biology of Australian Plants*. Univ. W. Aust.

REDDELL, P. and BOWEN, G. 1985. Frankia source affects growth, nodulation and nitrogen fixation in Casuarina species. New Phytol. 100, 115-22.

SHEPHERD, K.R. and EL-LAKANY, M.H. 1983. A provenance trial of Casuarina glauca and C. cunninghamiana. In S.J. Midgley, J.W. Turnbull and R.D. Johnston (eds), Casuarina Ecology, Management and Utilization, CSIRO, Melbourne.

TORREY, J.G. 1976. Initiation and development of root nodules of Casuarina (Casuarinaceae). Amer. J. Bot. 63, 335-44.

TURNBULL, J.W. and MARTENSZ, P.N. 1982. Aspects of seed collection, storage and germination in Casuarinaceae. Aust. For. Res. 12, 281-94.

TURNBULL, J.W. and MARTENSZ, P.N. 1983. Seed production, collection and germination in Casuarinaceae. In S.J. Midgley, J.W. Turnbull and R.D. Johnston (eds), Casuarina Ecology, Management and Utilization. CSIRO, Melbourne.

WILSON, K.L. and JOHNSON, L.A.S. 1989. Casuarinaceae. Flora of Australia 3, 100-174.

ZAR, J.H. 1984. Biostatistical Analysis. 2nd ed. Prentice-Hall, Englewood Cliffs, New Jersey.

Appendix

Part 1. List of seed specimens; species marked with * are placed by Wilson and Johnson (1989) in Allocasuarina.

Species Name	No. in this Study	Seed Source	
	,	Source/ Collection Number	Locality (latlong)
Casuarina			
*acuaria	60 N	ISS(1)	WA
*acutivalvis	23 K 71 T 72 T	ings Park SC SC (2)	WA 31.5-118.1, WA
* cambestris	24 K	ings Park	W/A
**ssp cambestris	73 T	SČ	31 39-117 254 W/A
*ssp. eriochlayms	74 T	SC	29.56-121 7 W/A
*ssp. grossa	75 T	SC	32-121.4. WA
*comiculata	25 K	lings Park	WA
	76 T	SČ	32.5-118.48. WA
	77 T	SC	31.7-120.12, WA
cristata	61 N	ISS	WA
	92 T	SC	28.29-150.27, OLD
	93 T	SC	31.43-148.4. NSW
cunninghamiana			
ssp. cunninghamiana	1-6 Y	′H(3)	Monash campus, VIC
ssp. miodon	45 N	NT Herb.	NT
decaisneana	62 N	NSS	?
	78 T	SC	23.45-132.41, NT
	79 1	SC	22.48-131.57, NT
*decussata	80 1	SC	34.3-116, WA
* * * *	81 1	SC	34.59-117.16, WA
⁺ dielsiana	82 1	SC	29.3-117.1, WA
	85 1	SC	29.17-116.53, WA

*distyla	55	JGC(4)354	Pretty Beach, NSW
astyla	84	TSC	0-100, NSW
	85	TSC	0-100, NSW
eauisetifolia	63	NSS	?
ssp. incana	94	TSC	23.13-150.48, QLD
ssp. equisetifolia	95	TSC	16.41-145.35, QLD
sept of the second	96	TSC	11.36-110.37, Thailand
	97	TSC	19-110, China
* fraseriana	26-7	Kings Park	WA
glauca	104-7	YH(3)	Monash campus, VIC
helmsii	86	TSC	31.5-118, 33, WA
	87	TSC	32.1-121, 47, WA
*huegeliana	28	Kings Park	WA
	39	DS(5)	Ravensthorpe, WA
*humilis	29	Kings Park	WA
	37	DS	Esperance, WA
*inophloia	34	PIF(6)2224	mundubbera, QLD
*lehmanniana	30	Kings Park	WA Eastern NL W/A
	36	DS	Esperance N., WA
	120	N55	WA Transma VIC
*littoralis	10	JGC 285	Transdin NW/ VIC
	11	JGC 277	Ma Borne OLD
	20	PIF 2140	Mundubhara OLD
	50	PIF 2204	Toohey Forest OLD
	50	JGC 359	I Muumorah Ros NSW
	52	100 351	L. Munmorah Res., NSW
	55	100 352	Nowra S NSW
	50	TSC	16 43.145 2 OLD
*luehmannii	00	TSC	16 49-145 23 OLD
	31	Kinge Park	W/A
* microstachya	64	NISS	2
monilifera	12	IGC 201	Halls Gap S.W. VIC
muelleriana	12	IGC 310	Meningie E. VIC
	40	IGC 312	Keith S. SA
	112.3	VH(3)	Monash campus, VIC
	115	IGC sp	Grampians, VIC
*	65	HGK(7)	NSW
*-heer	66	NSS	WA
obesa	08	TSC	29.5-117.27. WA
	00	TSC	26.34-120.3. WA
alizadan	58	ECPNG(8)	Marawaka, PNG
*baludosa	13	IGC 292	Halls Gap NE, VIC
putudosa	14	IGC s.n.	VIC
	15	IGC 281	Dalar, VIC
*baradora	116	IGC s.n.	Grampians, VIC
*binaster	32	Kings Park	WA
princisier	67	NSS	WA
* busilla	117	IGC s.n.	Grampians, VIC
pushin	118	IGC 292	Grampians, VIC
	119	IGC s.n.	Grampians, VIC
*scleroclada	68	NSS	WA
*striata	40-4	BGA(9)	Kangaroo Is., SA
*tessellata	69	NSS	WA
COULTRANCE	90-1	TSC	29.28-117.18, WA
*thunoides	38	DS	Esperance N., WA
*torulosa	16	IGC s.n.	VIC
	21	PIF 2113	Mt Perry, QLD
	22	PIF s.n.	Cooloola, QLD
	101-3	YH(3)	Monash Campus, VIC

*trichodon *verticillata	70 NSS 108-11 YH(3) 108-11 YH(3)	WA Monash campus, VIC Monash campus, VIC
veniciliata	108-11 YH(3) 108-11 YH(3)	Monash campus, Monash campus,

(1) NSS - Nindethana Seed Service, Woogenilup, WA

(2) TSC - Tree Seed Centre, CSIRO, Canberra

(3) YH - Y.H. Hwang, Monash University

(4) JGC - J.G. Conran, Monash University

(5) DS - Dianne Simmons, Victoria College

(6) PIF - P.I. Forster, University of Queensland

(7) HGK - H.G. Kershaw Co., Terry Hills, NSW

(8) FCPNG - Forest Commission, Papua New Guinea

(9) BGA - Botanic Garden, Adelaide

NSW = New South Wales

QLD = Queensland

TAS =Tasmania

WA =Western Australia

NT =Northern Territory

SA =South Australia

VIC =Victoria

PNG =Papua New Guinea

Part II. Time period to the first germination.

Specimen Number	Days	Specimen Number	Days	Specimen	Days
1	5	43	9	84	7
2	5	44	11	85	7
3	5	45	6	86	10
4	5	47	16	87	6
5	5	49	12	88	8
6	5	50	8	89	8
10	6	52	6	90	6
11	7	53	5	91	6
12	15	55	5	92	9
13	12	56	5	93	9
14	11	58	7	94	15
15	6	60	18	95	15
16	5	61	11	96	15
20	5	62	4	97	15
21	6	63	18	98	7
22	11	64	9	. 99	7
23	12	65	9	101	6
24	5	66	7	102	7
25	21	67	17	103	7
26	14	68	9	104	12
27	23	69	16	105	0
28	6	70	9	106	10
29	7	71	10	107	10

30	8	72	9	108	6
31	6	73	9	109	7
32	17	74	6	110	6
34	6	75	6	111	6
35	5	76	12	112	9
36	6	77	10	113	8
37	7	78	4	115	16
38	11	79	4	116	10
39	5	80	14	117	9
40	14	81	14	118	19
41	11	82	4	119	13
42	11	83	4	120	21

DRAGONFLIES FROM THE WESTERN KIMBERLEY REGION

By DAVID J. THOMPSON, Department of Environmental & Evolutionary Biology, The University, P.O. Box 147, Liverpool, L69 3BX, U.K.

INTRODUCTION

This paper provides a list of the dragonflies and damselflies (Odonata) collected during a five week visit to the west of the Kimberley region in April/May 1988. Information on habitats, local abundance, national distributions and some comments on the ecology and behaviour of some of the more interesting species are also presented. The visit was made between 7 April and 13 May 1988 as part of the Kimberley Research Project, an Anglo-Australian multi-disciplinary project designed to investigate aspects of the biology and geomorphology of the region. The study area contained parts of the Oscar, Napier and King Leopold Ranges and extended from Fitzroy Crossing (125° 32'E, 18° 11'S) in the south and east, to Lennard River/Gibb River Road (124° 45'E, 17° 24'S) in the west, and Beverley Springs (125° 28'E, 16° 43'S) in the north.

SPECIES AND DISTRIBUTIONS

A total of 32 species was collected, of which 14 were damselflies (Sub-Order Zygoptera) and 18 were dragonflies (Sub-Order Anisoptera). Table 1 lists the species and the habitat types from which they were collected, together with a rough index of abundance. Watson (1974) listed 53 species of odonates from the Kimberley region, and Watson (1977) added a further 4 species. Four species were collected which did not appear among the 57; they were Agriocnemis argentea, Argiocnemis nubescens, Austroagrion pindrina and Austrosticta fieldi. Of these, the first two have been recorded in the Kimberley region since 1977 (Dr. J.A.L. Watson, pers. comm.), but the third, Austroagrion pindrina, is the first record of this species outside the Pilbara region. A mating pair was collected in Brooking Gorge in the Oscar Range (125° 32'E, 18° 1'S) on 18 April. A long series of Austrosticta was collected. The specimens were essentially A. fieldi, but tended to bridge the